2,508 research outputs found

    Video monitoring of Sparidae temporal rhythms: three-year study by OBSEA cabled observatory

    Get PDF
    The abundance and composition of fish assemblages varies at different temporal scales as a product of diel and annual rhythms. In this study, we used a video-wired observatory (OBSEA, www.obsea.es) to monitor annual rhythms in a coastal fish assemblage with a 3-year data set (2012-2014). The photographs were acquired at 30 min frequency. Five species of the family Sparidae were studied (i.e. Dentex dentex, Diplodus sargus, Diplodus vulgaris, Diplodus annularis and Diplodus puntazzo) together with water temperature and daylength. The results of the annual rhythmicity analysis indicated that most of the peaks of abundance occured in the autumn months. Results suggest differentially temporal use of the reproductive or trophic niche.Peer ReviewedPostprint (published version

    Chronic oleoylethanolamide treatment decreases hepatic triacylglycerol level in rat liver by a pparγ/srebp-mediated suppression of fatty acid and triacylglycerol synthesis

    Get PDF
    none11noOleoylethanolamide (OEA) is a naturally occurring bioactive lipid belonging to the family of N-acylethanolamides. A variety of beneficial effects have been attributed to OEA, although the greater interest is due to its potential role in the treatment of obesity, fatty liver, and eating-related disorders. To better clarify the mechanism of the antiadipogenic effect of OEA in the liver, using a lipidomic study performed by1H-NMR, LC-MS/MS and thin-layer chromatography analyses we evaluated the whole lipid composition of rat liver, following a two-week daily treatment of OEA (10 mg kg−1 i.p.). We found that OEA induced a significant reduction in hepatic triacylglycerol (TAG) content and significant changes in sphingolipid composition and ceramidase activity. We associated the antiadipogenic effect of OEA to decreased activity and expression of key enzymes involved in fatty acid and TAG syntheses, such as acetyl-CoA carboxylase, fatty acid synthase, diacylglycerol acyltransferase, and stearoyl-CoA desaturase 1. Moreover, we found that both SREBP-1 and PPARγ protein expression were significantly reduced in the liver of OEA-treated rats. Our findings add significant and important insights into the molecular mechanism of OEA on hepatic adipogenesis, and suggest a possible link between the OEA-induced changes in sphingolipid metabolism and suppression of hepatic TAG level.openRomano A.; Friuli M.; Del Coco L.; Longo S.; Vergara D.; Del Boccio P.; Valentinuzzi S.; Cicalini I.; Fanizzi F.P.; Gaetani S.; Giudetti A.M.Romano, A.; Friuli, M.; Del Coco, L.; Longo, S.; Vergara, D.; Del Boccio, P.; Valentinuzzi, S.; Cicalini, I.; Fanizzi, F. P.; Gaetani, S.; Giudetti, A. M

    The addition of rituximab to fludarabine improves clinical outcome in untreated patients with ZAP-70-negative chronic lymphocytic leukemia.

    Get PDF
    Clinical trials of monoclonal antibodies in combination with chemotherapy have reported previously unattained response rates in patients with B-cell chronic lymphocytic leukemia (B-CLL); however, the analysis of ZAP-70 protein and/or CD38 may explain better the discordant outcomes independent of treatment

    DNA Damage Response Protein CHK2 Regulates Metabolism in Liver Cancer

    Get PDF
    Defective mitosis with chromosome missegregation can have a dramatic effect on genome integrity by causing DNA damage, activation of the DNA damage response (DDR), and chromosomal instability. Although this is an energy-dependent process, mechanisms linking DDR to cellular metabolism are unknown. Here we show that checkpoint kinase 2 (CHK2), a central effector of DDR, regulates cellular energy production by affecting glycolysis and mitochondrial functions. Patients with hepatocellular carcinoma (HCC) had increased CHK2 mRNA in blood, which was associated with elevated tricarboxylic acid cycle (TCA) metabolites. CHK2 controlled expression of succinate dehydrogenase (SDH) and intervened with mitochondrial functions. DNA damage and CHK2 promoted SDH activity marked by increased succinate oxidation through the TCA cycle; this was confirmed in a transgenic model of HCC with elevated DNA damage. Mitochondrial analysis identified CHK2-controlled expression of SDH as key in sustaining reactive oxygen species production. Cells with DNA damage and elevated CHK2 relied significantly on glycolysis for ATP production due to dysfunctional mitochondria, which was abolished by CHK2 knockdown. This represents a vulnerability created by the DNA damage response that could be exploited for development of new therapies

    Annual rhythms of temporal niche partitioning in the Sparidae family are correlated to different environmental variables

    Get PDF
    none11siopenSbragaglia, Valerio; Nuñez, Jesús D.; Dominoni, Davide; Coco, Salvatore; Fanelli, Emanuela; Azzurro, Ernesto; Marini, Simone; Nogueras, Marc; Ponti, Massimo; del Rio Fernandez, Joaquin; Aguzzi, JacopoSbragaglia, Valerio; Nuñez, Jesús D.; Dominoni, Davide; Coco, Salvatore; Fanelli, Emanuela; Azzurro, Ernesto; Marini, Simone; Nogueras, Marc; Ponti, Massimo; del Rio Fernandez, Joaquin; Aguzzi, Jacop

    Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia

    Get PDF
    Purpose:Despite the identification of several baseline prognostic indicators, the outcome of patients with acute myeloid leukemia (AML) is generally heterogeneous. The effects of autologous (AuSCT) or allogeneic stem-cell transplantation (SCT) are still under evaluation. Minimal residual disease (MRD) states may be essential for assigning patients to therapy-dependent risk categories. Patients and Methods: By multiparametric flow cytometry, we assessed the levels of MRD in 142 patients with AML who achieved complete remission after intensive chemotherapy. Results: A level of 3.5 x 10(-4) residual leukemia cells (RLCs) after consolidation therapy was established to identify MRD-negative and MRD-positive cases, with 5-year relapse-free survival (RFS) rates of 60% and 16%, respectively (P <.0001) and overall survival (OS) rates of 62% and 23%, respectively (P=.0001). Of patients (n = 77) who underwent a transplantation procedure (56 AuSCT and 21 SCT procedures); 42 patients (55%) were MRD positive (28 patients who underwent AuSCT and 14 patients who underwent SCT) and 35 patients (45%) were MRD negative (28 patients who underwent AuSCT and seven who underwent SCT). MRD-negative patients had a favorable prognosis, with only eight (22%) of 35 patients experiencing relapse, whereas 29 (69%) of 42 MRD-positive patients experienced relapse (P <.0001). In this high-risk group of 42 patients, we observed that 23 (82%) of 28 of those who underwent AuSCT experienced relapse, whereas six (43%) of 14 who underwent SCT experienced relapse (P=.014). Patients who underwent SCT also had a higher likelihood of RFS (47% v 14%). Conclusion A threshold of 3.5 x 10(-4) RLCs postconsolidation is critical for predicting disease outcome. MRD-negative patients have a good outcome regardless of the type of transplant they receive. In the MRD-positive group, AuSCT does not improve prognosis and SCT represents the primary option

    Progress towards sustainable control of xylella fastidiosa subsp. Pauca in olive groves of salento (apulia, italy)

    Get PDF
    Xylella fastidiosa subsp. pauca is the causal agent of “olive quick decline syndrome” in Salento (Apulia, Italy). On April 2015, we started interdisciplinary studies to provide a sustainable control strategy for this pathogen that threatens the multi-millennial olive agroecosystem of Salento. Confocal laser scanning microscopy and fluorescence quantification showed that a zinc-copper-citric acid biocomplex—Dentamet® —reached the olive xylem tissue either after the spraying of the canopy or injection into the trunk, demonstrating its effective systemicity. The biocomplex showed in vitro bactericidal activity towards all X. fastidiosa subspecies. A mid-term evaluation of the control strategy performed in some olive groves of Salento indicated that this biocomplex significantly reduced both the symptoms and X. f. subsp. pauca cell concentration within the leaves of the local cultivars Ogliarola salentina and Cellina di Nardò. The treated trees started again to yield. A1 H-NMR metabolomic approach revealed, upon the treatments, a consistent increase in malic acid and γ-aminobutyrate for Ogliarola salentina and Cellina di Nardò trees, respectively. A novel endotherapy technique allowed injection of Dentamet® at low pressure directly into the vascular system of the tree and is currently under study for the promotion of resprouting in severely attacked trees. There are currently more than 700 ha of olive groves in Salento where this strategy is being applied to control X. f. subsp. pauca. These results collectively demonstrate an efficient, simple, low-cost, and environmentally sustainable strategy to control this pathogen in Salento

    Caracterización clínica e histopatológica de la infección por el subtipo zoonótico IIa A21G1R1 de <i>Cryptosporidium parvum</i> en modelo murino

    Get PDF
    Cryptosporidium parvum es un parásito zoonótico cuya importancia ha aumentado en los últimos tiempos por su asociación con distintas causas de inmunosupresión. Variaciones en la patogenicidad y virulencia en los distintos subtipos de C. parvum han sido reportadas. Este fenómeno podría estar relacionado con distintos mecanismos de invasión y/o distinta localización intestinal.Facultad de Ciencias Médica

    Effects of a diet based on foods from symbiotic agriculture on the gut microbiota of subjects at risk for metabolic syndrome

    Get PDF
    none18noDiet is a major driver of gut microbiota variation and plays a role in metabolic disorders, including metabolic syndrome (MS). Mycorrhized foods from symbiotic agriculture (SA) exhibit improved nutritional properties, but potential benefits have never been investigated in humans. We conducted a pilot interventional study on 60 adults with ≥ 1 risk factors for MS, of whom 33 consumed SA‐derived fresh foods and 27 received probiotics over 30 days, with a 15‐day follow‐up. Stool, urine and blood were collected over time to explore changes in gut microbiota, metabolome, and biochemical, inflammatory and immunologic parameters; previous dietary habits were investigated through a validated food‐frequency questionnaire. The baseline microbiota showed alterations typical of metabolic disorders, mainly an increase in Coriobacteriaceae and a decrease in health-associated taxa, which were partly reversed after the SA‐based diet. Improvements were observed in metabolome, MS presence (two out of six subjects no longer had MS) or components. Changes were more pronounced with less healthy baseline diets. Probiotics had a marginal, not entirely fa-vorable, effect, although one out of three subjects no longer suffered from MS. These findings sug-gest that improved dietary patterns can modulate the host microbiota and metabolome, counteract-ing the risk of developing MS.openTurroni S.; Petracci E.; Edefonti V.; Giudetti A.M.; D'amico F.; Paganelli L.; Giovannetti G.; Del Coco L.; Fanizzi F.P.; Rampelli S.; Guerra D.; Rengucci C.; Bulgarelli J.; Tazzari M.; Pellegrini N.; Ferraroni M.; Nanni O.; Serra P.Turroni, S.; Petracci, E.; Edefonti, V.; Giudetti, A. M.; D'Amico, F.; Paganelli, L.; Giovannetti, G.; Del Coco, L.; Fanizzi, F. P.; Rampelli, S.; Guerra, D.; Rengucci, C.; Bulgarelli, J.; Tazzari, M.; Pellegrini, N.; Ferraroni, M.; Nanni, O.; Serra, P

    Effects of a diet based on foods from symbiotic agriculture on the gut microbiota of subjects at risk for metabolic syndrome

    Get PDF
    Diet is a major driver of gut microbiota variation and plays a role in metabolic disorders, including metabolic syndrome (MS). Mycorrhized foods from symbiotic agriculture (SA) exhibit improved nutritional properties, but potential benefits have never been investigated in humans. We conducted a pilot interventional study on 60 adults with 65 1 risk factors for MS, of whom 33 consumed SA\u2010derived fresh foods and 27 received probiotics over 30 days, with a 15\u2010day follow\u2010up. Stool, urine and blood were collected over time to explore changes in gut microbiota, metabolome, and biochemical, inflammatory and immunologic parameters; previous dietary habits were investigated through a validated food\u2010frequency questionnaire. The baseline microbiota showed alterations typical of metabolic disorders, mainly an increase in Coriobacteriaceae and a decrease in health-associated taxa, which were partly reversed after the SA\u2010based diet. Improvements were observed in metabolome, MS presence (two out of six subjects no longer had MS) or components. Changes were more pronounced with less healthy baseline diets. Probiotics had a marginal, not entirely fa-vorable, effect, although one out of three subjects no longer suffered from MS. These findings sug-gest that improved dietary patterns can modulate the host microbiota and metabolome, counteract-ing the risk of developing MS
    corecore